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ABSTRACT
Image inpainting as a means of substituting missing image
parts can become difficult when the image is textured. In
this paper we apply a local statistical model of the source
color image with the aim to predict missing texture regions.
We have shown in a series of papers that textures can be
modeled locally by estimating the joint probability density
of spectral pixel values in a suitably chosen observation
window. For the sake of image inpainting we estimate the
joint multivariate density in the form of a Gaussian mixture
of product components. The missing image region is in-
painted iteratively by step-wise prediction of the unknown
spectral values.

KEY WORDS
Image Restoration, Image Inpainting, Color Texture Pre-
diction, Local Texture Model, Gaussian Mixtures, EM Al-
gorithm.

1. Introduction

Image inpainting has become a well established field in
computer graphics with many potential applications, in-
cluding repair of missing or damaged image parts, (semi-)
automatic retouching of objects in images and videos, but
also bandwidth preservation in image transfer etc. Numer-
ous contributions to the field have appeared since the sem-
inal works of Bertalamio at al. [1], [2] and others [3], [4]
with very good results achieved on a range of various im-
age types. The techniques employed range from isophote
line detection and reconstruction [2], [5] over geometric
partial differential equations [6], global image statistics [7]
to wavelets [8].

Most of the work cited above focuses on extrapolation
of the surrounding image region into the missing area. Yet
some of the more problematic cases are images containing
textured regions, where many successful inpainting meth-
ods produce too apparent non-texture like patches. There
are successful alternative techniques to fill a missing area
with a selected texture [3], [9], [2] but they have some dis-
advantages. Usually the user has to select the texture piece
to be copied into the missing area and, in case of regions
including several background textures, the inpainting may

be difficult. Although some parts of search of the suitable
textures can be done automatically, the corresponding soft-
ware solutions are usually time consuming [2]. In addition,
it would be necessary to distinguish between textured and
“structured” areas and choose a suitable technique for each
type of background.

In our paper we investigate an original approach to
textured image inpainting based on modeling using a mix-
ture of Gaussian components of special type. After the
model is obtained, it is used for sequential prediction of
the missing parts. We assume it is known which pixels or
regions are to be substituted. The method makes use of a re-
cently proposed approach to texture modeling based on es-
timating the statistical texture properties locally [10], [11],
[12]. We estimate the joint probability density of the spec-
tral pixel values within a small observation window in the
form of a Gaussian mixture of product components. Using
a data set obtained by pixelwise shifting of the observation
window we can estimate the mixture parameters by means
of the EM algorithm. The distribution mixture model de-
scribes the statistical properties of the image by fitting the
mixture components to the typical patches as they occur in
the observation window. The selection of the most typical
window patch representants is optimally controlled by the
underlying log-likelihood criterion. Finally, the prediction
of missing parts is easily achievable via computing condi-
tional probability distributions. In the inpainting phase the
prediction formula automatically chooses the best continu-
ation of the image at the boundary of missing parts.

The paper is organized as follows. In Sec. 2 we de-
scribe the properties of local statistical model. The princi-
ple of image inpainting by prediction is subject of Sec. 3.
Sec. 4 describes the computational experiments and finally
we summarize the results in the Conclusion Section.

2. Local Statistical Model

The local statistical model has been proposed originally for
textures but the technique is applicable to arbitrary images
as well. In the following we consider a digitized color im-
age, possibly containing textured regions, described by a
matrix of vector variables where each pixel specifies three
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RGB spectral values

Z = [zij ] I J
i=0 j=0 , zij = (zij1, zij2, zij3) ∈ R3.

Here i, j correspond to row and column indices respec-
tively. In order to describe local properties of the image
we assume a square observation window with cut-off cor-
ners (cf. [13]) to simply emulate the ”ideal” circular shape.
Given an observation window centered at a position (i, j)
we denote

x(i, j) = x = (x1, x2, . . . , xN ) ∈ X , X = RN

the vector of spectral values of the window pixels in a fixed
arrangement, i.e. for each pixel there are three spectral val-
ues xn.

In each position we treat the window contents (image
patch) x as an observation of a random vector and assume
that the statistical properties of the variables xn can be de-
scribed by a multivariate probability density. For this pur-
pose we approximate the unknown density function in the
form of Gaussian mixture

P (x) =
∑

m∈M
wmF (x|µm,σm), x ∈ X , (1)

M = {1, 2, . . . ,M}, N = {1, 2, . . . , N}.

Here M and N denote the index sets of components
and variables respectively, wm are probability weights and
F (x|µm,σm) denote the mixture components defined as
products of univariate Gaussian densities [11], [12]:

F (x|µm,σm) =
∏

n∈N
fn(xn|µmn, σmn), (2)

fn(xn|µmn, σmn) =
1√

2πσmn

exp
{
− (xn − µmn)2

2σ2
mn

}
.

It can be seen that the diagonal form of covariance matri-
ces of the Gaussian densities (2) does not imply the restric-
tive assumption of independence of variables in x. With
a large number of components (in our case M ≈ 102) the
Gaussian mixture (1) is capable of describing rather general
probability density functions and becomes similar to the
well known non-parametric Parzen estimate. Let us recall
that, choosing the Parzen window function in the form (2),
we can guarantee the Parzen estimate to be asymptotically
unbiased and consistent when the smoothing parameters σn

approach zero with the increasing sample size. From the
computational point of view the product components (2)
avoid the risk of ill-conditioned covariance matrices and
simplify the evaluation of marginal densities [cf. later Eq.
(12)].

The standard way to estimate mixtures is to use the
EM algorithm [11], [14]. By using the “image patch” data
set S obtained by pixel-wise shifting the observation win-
dow through the original texture image

S = {x(1), . . . ,x(K)}, x(k) ∈ X , (K = |S|), (3)

we maximize the corresponding log-likelihood function

L =
1
|S|
∑
x∈S

logP (x) =

=
1
|S|
∑
x∈S

log [
∑

m∈M
wmF (x|µm,σm)] (4)

by means of the well-known EM iteration equations [11] :

E-step: (m ∈M, n ∈ N ,x ∈ S)

q(m|x) =
wmF (x|µm,σm)∑
j∈M wjF (x|µj ,σj)

, m ∈M (5)

M-step:
w

′

m =
1
|S|
∑
x∈S

q(m|x), (6)

µ
′

mn =
1∑

x∈S q(m|x)

∑
x∈S

xnq(m|x), (7)

(σ
′

mn)2 = −(µ
′

mn)2 +
1∑

x∈S q(m|x)

∑
x∈S

x2
nq(m|x).

(8)
Here the apostrophe denotes the new parameter values in
each iteration.

Let us remark that the difficult implementation points
of EM algorithm (e.g., the existence of local maxima of
the likelihood function and the related problem of a proper
choice of the initial parameter values) are less relevant if
the sample size is sufficiently large as in our case. Con-
sidering problem dimensionality N ≈ 101 − 102, num-
ber of components M ≈ 102 and the number of samples
K ≈ 106, we may expect numerous local maxima of the
log-likelihood function (4) but, according to our experi-
ence, the various mixture estimates resulting from various
initialization points are of comparable quality and are us-
able equally well for our task.

It should be noted that the log-likelihood criterion (4)
implicitly assumes the data vectors x ∈ S to be indepen-
dent and identically distributed according to the probability
density P (x). Unfortunately, this condition is not guaran-
teed in case of the shifting window because the respective
image patches overlap in different positions of the window.
For this reason the data vectors x ∈ S correspond only
to a specific “trajectory” in the sample space X and there-
fore the data set S may have bad sampling properties (cf.
[10], [11], [12]). However, in case of image inpainting,
this aspect shows to be less relevant since in the predic-
tion formula the estimated distribution is applied mainly to
the original “training” data which correspond to the known
parts of the image.

3. Local Image Prediction

The statistical description of the local image properties by
the Gaussian density mixture (1) naturally suggests the pos-
sibility of local image prediction. Let us suppose that, at a
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given position of the observation window, some part of the
image patch is known. Denoting

xC = (xn1 , xn2 , . . . , xnl
) ∈ XC , XC = R|C| (9)

C = {n1, n2, . . . , nl} ⊂ N

the subvector of all given pixel variables, we can estimate
the remaining missing pixel values xn, n ∈ (N \ C), by
means of the conditional densities

pn|C(xn|xC) =
Pn,C(xn,xC)
PC(xC)

= (10)

=
∑

m∈M
Wm(xC)fn(xn|µmn, σmn).

Here
Wm(xC) =

wmF (xC |µm,σm)∑
j∈M wjF (xC |µj ,σj)

. (11)

are the conditional weights given xC and

F (xC |µm, σm) =
∏
n∈C

fn(xn|µmn, σmn), xC ∈ XC

(12)
denotes the marginal component functions corresponding
to the subspace XC . Note that the simple plug-in for-
mula (10) is formally enabled by a simple evaluation of
the marginal densities Pn,C(xn,xC) and PC(xC).

For a fixed position of the observation window the
formula (10) can be applied to any missing variable xn, n ∈
N \ C. Thus, by computing the conditional expectation

E{xn} =
∫
xnpn|C(xn|xC)dxn =

∑
m∈M

Wm(xC)µmn,

(13)
we can estimate even single missing spectral values in the
window.

In our experiments we have used the computationally
more efficient random sampling instead of the conditional
expectation formula (13). As the dimension of the space
X is relatively high (N ≈ 102), the mixture components
F (x|µm, σm) are nearly non-overlapping. For this reason
the conditional weights (11) have nearly binary properties
and we can consider in Eq. (13) only the term with the
highest conditional weight Wm(xC) without any essential
loss of accuracy. In this way the part of the observation
window to be inpainted can be actually covered by the cor-
responding component means µmn of the most “suitable”
component. The newly obtained grey levels xn can be later
used to upgrade the conditional weights Wm(xC) in the
next prediction step.

In our previous experiments with texture synthesis
we have used initially a pixel-wise left-to-right and top-
to-down shifting of the observation window. In this way
we tried to supply maximum information in the prediction
formula (13) but the process was rather instable. After sev-
eral prediction steps the texture synthesis often failed com-
pletely with a noisy texture image as a result. Surprisingly,

by increasing the prediction step to about half the window
size, the synthesized textures became more stable and more
realistic. This effect is probably due to the limited accuracy
of the estimated mixture model. A greater prediction step
requires only lower dimensional marginals of the estimated
mixture which are probably less biased by the limited qual-
ity of the estimated mixture P (x).

In case of image inpainting the situation is principally
different. The missing parts of the image are usually re-
stricted in size and therefore only a few prediction steps
are sufficient to “propagate” the information from bound-
ary image regions into the missing area. For this reason the
problem of instability is of considerably less importance.
In all our computational experiments we have obtained the
best results when predicting one pixel at a time.

Another problem point in texture synthesis is the
proper choice of window size. On one hand the window
should be large enough to reproduce the low-frequency de-
tails of the texture image, on the other hand the resulting
dimension of the estimated probability density should be
as small as possible. Problem dimensionality quickly in-
creases as a function of window size and therefore the vari-
ability of observed image patches increases quickly in the
same image. Although large, the available data set (|S| ≈
106) may easily occur to be insufficient to estimate the un-
derlying multivariate mixture model reliably if the window
size is too large. Moreover, from the computational point
of view the EM estimation of complex Gaussian mixtures
can become unbearably time-consuming even for moder-
ate window size. In the following section we show which
settings proved applicable.

4. Computational Experiments

Image inpainting based on local statistical model provides a
unified “compromise” solution that treats both the textured
and “structured” image areas in the same way without the
necessity to choose a suitable technique for each type of
background. The estimated mixture components optimally
fit to the typical variants of the window patches and the
corresponding means are then used to reconstruct the miss-
ing parts of the image. In view of Sec. 2 the selection of
the typical component means is optimally controlled by the
log-likelihood function (4) which is known to be a pow-
erful criterion to fit the parametric mixture model to the
available data. In the inpainting phase the prediction for-
mula (12) merely identifies the piece of background at a
given position of the window and chooses the best compo-
nent mean to extrapolate the surrounding area. In this way
local statistical model provides a unified highly specific so-
lution to the problem of differently textured and structured
areas of the image at the level of the window patch.

In order to illustrate the properties of the proposed
method we have chosen two 1280 × 960 images. The first
image is composed of four different types of textures (cf.
Fig. 1). It can be seen that the model based prediction re-
moves the superimposed text successfully while reproduc-
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Figure 1. Example of image inpainting I.
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Figure 2. Example of image inpainting II.
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ing the underlying textures with only minor wrinkles. The
second example (cf. Fig. 2) illustrates the method in case
of an outdoor scene picture containing various textured and
structured parts. Also in this case the inpainting was rela-
tively successful, at least in the sense of achieving visually
unobtrusive reconstruction. The varying background of the
regularly positioned black holes provides excellent illustra-
tion of the prediction capabilities of the model.

In both experiments the local statistical model had
been estimated from the source damaged image. The only
parameters to be specified by the user are the window size
(we chose a square window of 7×7 pixels with cut-off cor-
ners, i.e. N = 111 = 3 ∗ (7 ∗ 7 − 4 ∗ 3)) and the number
of mixture components (M ≈ 500 ÷ 700). Training sam-
ples have been obtained from positions where the window
does not interfere with damaged areas. The training set thus
consisted of roughly 800000 samples in the first example
and 1150000 in the second example. The EM algorithm
has been stopped automatically by the relative increment
threshold ε = 10−3, i.e., by the condition ∆L/L < 10−3.
The resulting 15–20 iterations required about several hours
of CPU time (AMD Athlon 64).

In the inpainting phase we have proceeded iteratively.
In each iteration we made the prediction only at window
positions with only one missing pixel. The actual inpaint-
ing procedure needed about 10–50 iterations taking several
minutes of CPU time.

5. Conclusion

In this paper we propose a color image inpainting algo-
rithm based on statistical model of local textural properties.
We describe the statistical dependencies between the spec-
tral pixel values in a suitably chosen observation window
by a multivariate Gaussian mixture with product compo-
nents. We estimate the mixture parameters by means of the
EM algorithm from source color image patch data obtained
by pixelwise shifting the observation window through the
source color texture image. The estimated mixture com-
ponents optimally represent the typical variants of the win-
dow patches and the corresponding means are then used to
reconstruct the missing parts of the image. The image in-
painting based on local statistical model provides a unified
solution to the problem instead of choosing specific meth-
ods for different types of image areas to fit either textures
or “geometric” structures.
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102/07/1594 and No. 102/08/0593, 2C06019 ZIMOLEZ
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